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Abstract
A Hamiltonian is said to be quasi-exactly solvable (QES) if some of the energy
levels and the corresponding eigenfunctions can be calculated exactly and in
a closed form. An entirely new class of QES Hamiltonians having sextic
polynomial potentials is constructed. These new Hamiltonians are different
from the sextic QES Hamiltonians in the literature because their eigenfunctions
obey PT symmetry rather than Hermitian boundary conditions. These new
Hamiltonians present a novel problem that is not encountered when the
Hamiltonian is Hermitian: it is necessary to distinguish between the parametric
region of unbroken PT symmetry, in which all of the eigenvalues are real, and
the region of broken PT symmetry, in which some of the eigenvalues are
complex. The precise location of the boundary between these two regions
is determined numerically using the extrapolation techniques and analytically
using the WKB analysis.

PACS numbers: 03.65.Sq, 02.70.Hm, 02.90.+p

1. Sextic QES Hamiltonians

The purpose of this paper is to introduce a new class of quasi-exactly solvable (QES)
Hamiltonians having sextic polynomial potentials. While these new kinds of QES
Hamiltonians have positive, real eigenvalues, they have not yet been discussed in the literature
because they are not Hermitian. Instead, they are PT symmetric.

The term quasi-exactly solvable (QES) is used to describe a quantum-mechanical
Hamiltonian when a finite portion of its energy spectrum and associated eigenfunctions can be
found exactly and in a closed form [1]. Typically, QES potentials depend on a parameter J , and
for positive integer values of J one can find exactly the first J eigenvalues and eigenfunctions,
usually of a given parity. It has been shown that QES systems can be classified by using an
algebraic approach in which the Hamiltonian is expressed in terms of the generators of a Lie
algebra [2–5].
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Perhaps the simplest example of a QES Hamiltonian having a sextic potential is [6, 7]

H = p2 + x6 − (4J − 1)x2, (1)

where J is a positive integer. For each positive integer value of J , the time-independent
Schrödinger equation for this Hamiltonian,

−ψ ′′(x) + [x6 − (4J − 1)x2]ψ(x) = Eψ(x), (2)

has J even-parity eigenfunctions in the form of an exponential times a polynomial:

ψ(x) = e−x4/4
J−1∑
k=0

ckx
2k. (3)

The polynomial coefficients ck (0 � k � J − 1) satisfy the recursion relation

4(J − k)ck−1 + Eck + 2(k + 1)(2k + 1)ck+1 = 0, (4)

where we define c−1 = cJ = 0. The simultaneous linear equations (4) have a nontrivial
solution for c0, c1, . . . , cJ−1 if the determinant of the coefficients vanishes. This determinant
is a polynomial of degree J in the variable E. The roots of this polynomial are all real and
are the J quasi-exact energy eigenvalues of the Hamiltonian (1). Note that all of the QES
eigenfunctions (3) of H in (1) have the form of a decaying exponential exp

(− 1
4x4

)
multiplying

a polynomial. This is the standard form in the literature for the eigenfunctions of any QES
Hamiltonian whose potential is a polynomial.

The QES Hamiltonians associated with Hermitian Hamiltonians have been examined in
depth and classified exhaustively [1]. However, in 1998 new kinds of Hamiltonians that
have positive real energy levels were discovered [8, 9]. These new kinds of Hamiltonians
are not Hermitian (H �= H †) in the usual Dirac sense, where the Dirac adjoint symbol †
represents combined transpose and complex conjugation. Instead, these Hamiltonians possess
PT symmetry H = HPT ; that is, they remain invariant under combined space and time
reflection. This new class of non-Hermitian Hamiltonians has been studied heavily2 [10, 11]
and it has been shown that when the PT symmetry is not broken, such Hamiltonians define
unitary theories of quantum mechanics [13]

The key difference between Hermitian Hamiltonians and complex, non-Hermitian, PT -
symmetric Hamiltonians is that with PT -symmetric Hamiltonians the boundary conditions on
the eigenfunctions (the solutions to the time-independent Schrödinger equation) are imposed
in wedges in the complex plane. Sometimes these wedges do not include the real axis. (A
detailed discussion of the complex asymptotic behaviour of solutions to eigenvalue problems
may be found in [14].)

The discovery ofPT -symmetric Hamiltonians was followed immediately by the discovery
of a new class of QES models. Until 1998 it was thought that if the potential associated with a
QES Hamiltonian was a polynomial, then this polynomial had to be at least sextic; its degree
could not be less than six. This property is in fact true for Hamiltonians that are Hermitian.
However, in 1998 it was discovered that it is possible to have a QES non-Hermitian complex
Hamiltonian whose potential is quartic [15]:

H = p2 − x4 + 2iax3 + (a2 − 2b)x2 + 2i(ab − J )x. (5)

Here, a and b are real parameters and J is a positive integer. In [16] the Hamiltonian (5) is
generalized to include a centrifugal term of the form id/x + L(L + 1)/x2. For a large region
of the parameters a and b, the energy levels of this family of quartic Hamiltonians are real,

2 An excellent summary of the current status and the background of non-Hermitian and PT -symmetric Hamiltonians
may be found in [12].
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discrete, and bounded below, and the quasi-exact portion of the spectra consists of the lowest
J eigenvalues. Like the eigenvalues of the Hamiltonian (1), the lowest J eigenvalues of these
potentials are the roots of a J th-degree polynomial.3

The reality of the eigenvalues of H in (5) is ensured by the boundary conditions that its
eigenfunctions are required to satisfy. The eigenfunctions are required to vanish as |x| → ∞
in the complex-x plane inside two wedges called Stokes wedges. The right wedge is bounded
above and below by lines at 0◦ and −60◦ and the left wedge is bounded above and below by
lines at −180◦ and −120◦. The leading asymptotic behaviour of the wavefunction inside these
wedges is given by

ψ(x) ∼ e−ix3/3 (|x| → ∞). (6)

The new class of QES sextic Hamiltonians reported in this paper has the form

H = p2 + x6 + 2ax4 + (4J − 1 + a2)x2, (7)

where J is a positive integer and a is a real parameter. These Hamiltonians are very similar in
structure to those in (1) and to the other QES sextic Hamiltonians discussed in the literature [1],
but their distinguishing characteristic is that the asymptotic behaviour of their eigenfunctions
in the complex-x plane is different.

Let us examine first the asymptotic behaviour of the eigenfunction solutions to the
Schrödinger equation (2). For brevity, we call the eigenfunctions in (3) the good solutions
to (2) because they satisfy the physical requirement of being quadratically integrable. These
good solutions decay exponentially like exp

(− 1
4x4

)
as x → ±∞, while the corresponding

linearly independent bad solutions grow exponentially like exp
(

1
4x4

)
as x → ±∞. In the

complex-x plane the good solutions (3) decay exponentially as |x| → ∞ in two Stokes wedges
that are centred about the positive and the negative real-x axes. These wedges have an angular
opening of 45◦. The bad solutions grow exponentially in these wedges. At the upper and lower
edges of these wedges the good and bad solutions cease to decay and to grow exponentially
and they become purely oscillatory.

As we move downward past the lower edges of these wedges, we enter a new pair of
Stokes wedges. These wedges also have a 45◦ angular opening and are centred about the
lines arg x = −45◦ and arg x = −135◦. In these lower wedges, the good solutions grow
exponentially as |x| → ∞ and thus they behave like a bad solution.

In the lower pair of wedges we can find solutions to the new class of Hamiltonians in (7)
that behave like good solutions. These new PT -symmetric eigenfunctions have the general
form of the exponential exp( 1

4x4 + 1
2ax2) multiplied by a polynomial:4

ψ(x) = ex4/4+ax2/2
J−1∑
k=0

ckx
2k. (8)

Hamiltonians having even sextic polynomial potentials are special because such
Hamiltonians can be either Hermitian or PT -symmetric depending on whether the
eigenfunctions are required to vanish exponentially in the 45◦ wedges containing the positive
and negative real-x axes or in the other pair of 45◦ wedges contiguous to and lying just below

3 For a nonpolynomial QES PT -symmetric Hamiltonian see [17].
4 Note that ψ(x) in (8) is a function of x2 and thus all of the QES wavefunctions are symmetric under parity reflection
(x → −x). In general, PT -symmetric Hamiltonians, such as H = p2 −x4, are not symmetric under parity reflection
because the parity operator P changes the complex domain of the Hamiltonian operator. As a consequence, the
expectation value of the x operator is nonvanishing (see [18]). Nevertheless, the special QES eigenfunctions in (8)
are parity-symmetric. We believe that the parity operator may therefore be used to distinguish between the QES and
the non-QES portions of the Hilbert space.
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these wedges in the complex-x plane. In [19] complex sextic potentials were examined but
the wavefunctions exhibited the conventional asymptotic behaviour exp

(− 1
4x4

)
rather than

the new asymptotic behaviour in (8). We thank M Znojil for pointing this out to us. The
solutions for these two different boundary conditions are somewhat related. Specifically, a
good solution in one pair of wedges becomes a bad solution in the other pair of wedges.
However, a bad solution in one pair of wedges does not become a good solution in the other
pair of wedges, as we now explain.

Given a good solution ψgood(x) in one pair of wedges, we use the method of reduction of
order [20] to find the bad solution. We seek a bad solution in the form ψbad(x) = ψgood(x)u(x),
where u(x) is an unknown function to be determined. Substituting the bad solution into the
Schrödinger equation −ψ ′′(x)+V (x)ψ(x) = Eψ(x), we get the differential equation satisfied
by u(x):

ψgood(x)u′′(x) + 2ψ ′
good(x)u′(x) = 0. (9)

We solve this equation by multiplying by the integrating factor ψgood(x) and obtain the result

ψbad(x) = ψgood(x)

(∫ x

ds[ψgood(s)]
−2 + C

)
, (10)

where C is an arbitrary constant.
This bad solution always grows exponentially in the two wedges in which the good

solution decays exponentially. How does this bad solution behave in the other pair of wedges
in which the good solution grows exponentially? We can always choose the constant C so
that the bad solution vanishes as |x| → ∞ in one of these two wedges. However, in the other
of the two wedges, the bad solution will always grow exponentially. Thus, while the good
solution becomes bad as we cross from one pair of wedges to the other, the bad solution does
not become good.

2. Determination of the PT boundary

The difference between the Hermitian Hamiltonians in (1) and the PT -symmetric
Hamiltonians in (7) is that the Hermitian Hamiltonians always have real eigenvalues. The PT -
symmetric Hamiltonians in (7) have real eigenvalues only if the PT symmetry is unbroken;
if the PT symmetry is broken, some of the eigenvalues will be complex. Thus, it is crucial to
determine whether the PT symmetry is broken. We will see that there is a range of values of
the parameter a in (7) for which the energy levels are real and this is the region of unbroken
PT symmetry. Outside this region some of the eigenvalues appear as complex-conjugate
pairs.

Let us illustrate the difference between the regions of broken and unbroken PT symmetry
by examining some special solutions of the Schrödinger equation

−ψ ′′(x) + [x6 + 2ax4 + (4J − 1 + a2)x2]ψ(x) = Eψ(x), (11)

corresponding to H in (7). First, consider the case J = 1. The unique eigenfunction solution
to (11) of the form in (8) is ψ(x) = exp

(
1
4x4 + 1

2ax2
)

and the corresponding eigenfunction is
E = −a. Note that E is real so long as a is real. Thus, for J = 1 there is no region of broken
PT symmetry.

Next, consider the case J = 2. Now, there are two eigenfunctions. The two eigenvalues
are given by

E = −3a ± 2
√

a2 − 2. (12)
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Table 1. Critical values, [acrit(J )]2, of the parameter a2 listed as a function of J . When a2 is
greater than this critical value, the eigenvalues of the PT -symmetric Hamiltonian H in (7) are
all real. Thus, this is the region of unbroken PT symmetry. The PT symmetry is broken when
a2 < [acrit(J )]2. Note that the differences between successive values of [acrit(J )]2 appear to be
approaching a limit and this is indeed the case. In fact, the numerical value of this limit is exactly
12. Thus for large J , the critical values have the simple asymptotic behaviour [acrit(J )]2 ∼ 12J .

J [acrit(J )]2 [acrit(J + 1)]2 − [acrit(J )]2

2 2
3 10.587 470 0363 8.587 470 0363
4 20.551 533 4397 9.964 063 4033
5 31.053 455 2654 10.501 921 8257
6 41.851 956 9727 10.798 501 7073
7 52.840 939 0328 10.988 982 0601
8 63.963 634 8939 11.122 695 8611
9 75.185 875 5649 11.222 240 6710

10 86.485 395 1835 11.299 519 6186
11 97.846 807 2286 11.361 412 0451
12 109.259 033 5351 11.412 226 3065
13 120.713 791 3596 11.454 757 8245
14 132.204 725 9144 11.490 934 5548
15 143.726 846 1067 11.522 120 1923
16 155.276 172 0922 11.549 306 4512
17 166.849 402 0446 11.573 229 9524
18 178.443 911 7241 11.594 509 6795
19 190.057 407 9492 11.613 496 2251
20 201.688 027 3595 11.630 619 3103

Thus, there is now an obvious transition between real eigenvalues (unbroken PT symmetry)
and complex eigenvalues (broken PT symmetry). Evidently, the eigenvalues are real if
a �

√
2 or if a � −√

2.
We find that for any positive integer value of J > 1, the eigenvalues E for H in (7) are

entirely real if a2 is greater than some critical value [acrit(J )]2 that depends on J . These
critical values up to J = 20 are shown in table 1.

Observe from table 1 that the critical values of [acrit]2 grow monotonically with increasing
J . We have therefore also calculated the differences between successive critical values of
a2. These differences also grow monotonically with increasing J , but they appear to be
levelling off and seem to be approaching a limiting value. To see whether the differences
are indeed approaching a limiting value as J increases, we have plotted in figure 1 these
differences as a function of 1/J . This plot suggests that the differences tend to the value 12
as J → ∞.

To determine whether it is true that these differences really do approach limit 12, it is
necessary to extrapolate the sequence of differences to its value at J = ∞. To do so we
have calculated the Richardson extrapolants [20] of the sequence of differences. The first
Richardson extrapolants, R1(J ), of these differences are listed in table 2. Observe that the
sequence R1(J ) rises more slowly and quite convincingly appears to be approaching the value
12. The differences R1(J + 1) − R1(J ) between successive Richardson extrapolants are also
shown.

To test further the hypothesis that R1(J ) tends to the limiting value 12 as J → ∞, we have
calculated successive Richardson extrapolants of the Richardson extrapolants R1(J ) in table 2.
The successive extrapolants are listed in Table 3 and they provide very strong numerical
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Figure 1. The differences [acrit(J + 1)]2 − [acrit(J )]2 taken from table 1 plotted as a function of
1/J . Observe that as J increases, these differences tend towards the limiting value 12.

Table 2. First Richardson extrapolants R1(J ) of the sequence of differences [acrit(J + 1)]2 −
[acrit(J )]2 taken from table 1. Note that R1(J ) rises slowly and smoothly towards its limiting
value 12. The differences between successive Richardson extrapolants are also listed.

J R1(J ) series R1(J + 1) − R1(J )

1 11.340 656 7704
2 11.577 638 6705 0.236 981 90
3 11.688 241 3518 0.110 602 68
4 11.750 903 4718 0.062 662 12
5 11.791 264 8657 0.040 361 40
6 11.819 509 5305 0.028 244 66
7 11.840 472 2516 0.020 962 72
8 11.856 551 4577 0.016 079 21
9 11.869 554 6582 0.013 003 20

10 11.880 073 0055 0.010 518 35
11 11.888 878 5336 0.008 805 52
12 11.896 347 9526 0.007 469 42
13 11.902 771 7144 0.006 423 76
14 11.908 360 9386 0.005 589 23
15 11.913 272 8866 0.004 911 95
16 11.917 627 1918 0.004 354 30

evidence that limJ→∞
(
[acrit(J + 1)]2 − [acrit(J )]2

) = 12. From this we conclude that for large
J the asymptotic behaviour of the critical value of a2 is given by

[acrit(J )]2 ∼ 12J (J → ∞). (13)

Our numerical analysis provides convincing evidence that for large J the boundary
between the regions of broken and unbroken PT symmetry is given by the asymptotic
behaviour in (13). We will now verify this result analytically by using WKB methods [20].
From our numerical analysis we know that the first eigenvalues to become complex conjugate
pairs are always the highest, and this implies that WKB is the appropriate tool for investigating
the PT boundary for large J .
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Table 3. Repeated Richardson extrapolants of the sequence of Richardson extrapolants in Table 2.
This table provides strong and convincing numerical evidence that Richardson extrapolants R1(J )

tend to the limiting value 12 as J → ∞. This implies that for large J the critical values of a2

grow linearly with J (see equation (13)).

J R1(J ) R of R1(J ) R of R of R1(J ) R of R of R of R1(J )

1 11.340 656 7704 11.814 620 5706 12.004 272 8584 11.991 279 2745
2 11.577 638 6705 11.909 446 7145 11.997 776 0665 11.986 964 6719
3 11.688 241 3518 11.938 889 8318 11.994 172 2683 11.988 773 2331
4 11.750 903 4718 11.952 710 4409 11.992 822 5095 11.997 845 9499
5 11.791 264 8657 11.960 732 8547 11.993 827 1976 11.948 363 0075
6 11.819 509 5305 11.966 248 5785 11.986 249 8326 12.116 806 5542
7 11.840 472 2516 11.969 105 9005 12.004 900 7928 11.837 703 1045
8 11.856 551 4577 11.973 580 2620 11.984 001 0818 12.098 246 0411
9 11.869 554 6582 11.974 738 1309 11.996 694 9661 11.972 635 6846

10 11.880 073 0055 11.976 933 8144 11.994 289 0380 11.998 315 6753
11 11.888 878 5336 11.978 511 5620 11.994 655 0959
12 11.896 347 9526 11.979 856 8565
13 11.902 771 7144

For the potential V (x) = x6 + 2ax4 + (a2 + 4J − 1)x2, the leading-order WKB
quantization condition, valid for large n, is

(
2n + 1

2

)
π ∼

∫ T2

T1

dx
√

En − V (x) (n → ∞), (14)

where T1,2 are the turning points. Note that there is a factor of 2n + 1
2 , rather than n + 1

2 , on
the left side of this asymptotic relation because we are counting even-parity eigenfunctions.

For large n = J we approximate the integral in (14) by making the asymptotic substitution
a ∼ √

Jb, where b is a number to be determined. In order to verify the asymptotic behaviour
in (13), we must show that b = √

12. We then make the scaling substitutions

x = yJ 1/4 and EJ ∼ FJ 3/2 (15)

because for large J we can then completely eliminate all dependence on J from the integral.
We thus obtain the condition

2π =
∫ U2

y=U1

dy
√

F − [y6 + 2by4 + (b2 + 4)y2], (16)

where U1,2 = T1,2J
−1/4 are zeros of the algebraic equation

y6 + 2by4 + (b2 + 4)y2 − F = 0. (17)

Next, following the analysis in [7], we assume that in this large-J limit the polynomial in
(17) factors as

(y2 − α)2(y2 − β) = 0. (18)

The correctness of this factorization assumption will be verified in the subsequent analysis.
We then expand (18);

y6 − y4(β + 2α) + y2(α2 + 2αβ) − α2β = 0. (19)

Comparing coefficients of like powers of y in (17) and (19), we obtain the three equations

F = α2β, (20)

2b = −2α − β, (21)
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b2 + 4 = α2 + 2αβ. (22)

Subtracting the square of equation (21) from three times (22), we get β−α = ±√
b2 − 12,

and solving this equation simultaneously with (21), we get expressions for α and β:

3α = −2b −
√

b2 − 12, (23)

3β = −2b + 2
√

b2 − 12. (24)

We then substitute (23) and (24) into (20) to obtain

F = − 2
27 (b − √

b2 − 12)(2b +
√

b2 − 12)2. (25)

Finally, we calculate the value of the number b. Our procedure is simply to show that the
special choice b2 = 12 is consistent with the limiting WKB integral in (16). With this choice
we can see from (23) and (24) that α = β = 4/

√
3 and that (16) reduces to

2π =
∫ α

y=−α

dy(α − y2)3/2 = 2
∫ α

y=0
dy(α − y2)3/2. (26)

We simplify this integral by making the substitution y = √
uα, and obtain

3
8π = ∫ 1

u=0 du u−1/2(1 − u)3/2, (27)

which is an exact identity. Thus, we may conclude that b2 = 12. This verifies the asymptotic
formula in (13) for the location of the PT boundary.

Furthermore, we can see that F = 64
9

√
3 ≈ 12.3. Thus, we obtain a formula for the

large-J asymptotic behaviour of the largest QES eigenvalue at the PT boundary:

EJ ∼ 64
9

√
3J 3/2 (J → ∞). (28)

The difference between this WKB calculation and that done in [7] for the Hermitian QES
sextic Hamiltonian (1) is that here we have a critical value, b = √

12, or a ∼ √
12J . This

critical value defines the boundary between the regions of broken and unbroken PT symmetry
for thePT -symmetric Hamiltonian in (7). There is no analogue of this boundary for Hermitian
Hamiltonians.
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